Challenges and Opportunities in Federated Unlearning

Hyejun Jeong, Shiqing Ma, Amir Houmansadr

University of Massachusetts Amherst

Outline

- Preliminary: RTBF, MU, FL
- Challenges in Federated Unlearning
- Federated Unlearning
 - Who unlearns
 - What dataset
 - Learning config
 - Research implication
- Evaluation Objectives and Metric
- Insights and Future Research Direction

RTBF, MU

- The Right To Be Forgotten (RTBF)
 - An individual can request to eliminate their information and the influence on a trained model if they withdraw their consent.
- Machine Unlearning (MU)
 - Naïve approach: retrain the model from scratch, excluding the data to forget (retrain)
 - → Infeasible due to overhead
 - time, memory, and resource consumption
 - Efficiently remove the target's influence from the trained model
 - Data-driven: partition, obfuscation, augmentation
 - Model manipulation: shifting, pruning, replacement

Federated Learning

A distributed machine learning framework preserving data privacy

Federated Learning

Data heterogeneity

- Data heterogeneity
- Stochasticity of client selection

- Data heterogeneity
- Stochasticity of client selection
- Interactive training

- Data heterogeneity
- Stochasticity of client selection
- Interactive training
- Limited accessibility

Unlearner	Global	Own local	All local	Raw data
Server	✓		✓	
Target client	\checkmark	\checkmark		\checkmark
Remaining clients	✓	✓		

- Data heterogeneity
- Stochasticity of client selection
- Interactive training
- Limited accessibility

Unlearner	Global	Own local	All local	Raw data
Server	✓		✓	
Target client	\checkmark	\checkmark		\checkmark
Remaining clients	✓	✓		

Unlearning techniques in centralized settings are not trivially applicable!

Federated Unlearning

- We reviewed 44 Federated Unlearning papers.
 - System models
 - Who unlearns?
 - What data distribution?
 - What dataset?
 - Learning config?
 - Research implications?
 - Unlearning techniques
 - Evaluation metrics

Figure 1: Number of Federated Unlearning Publications.

Federated Unlearning

Removal Request

Federated Unlearning

FL Model

Target Removal

- Sample
- Class
- Client
- Feature

Influence Removal

- Historical info
- Gradient manipulation
- Loss function estimation
- Knowledge distillation
- Multi-task learning
- Reverse training
- Clustering

Performance Recovery

- Post training
- Fine-tuning
- Gradient manipulation
- Regularization
- Knowledge Distillation

Evaluation Metric

- Performance metric
- Parameter difference
- Indiscrimination quality
- Time taken
- Memory used

Unlearned Model

Who Unlearns under What Data Distribution?

Unlearner	Global	Own local	All local	Raw data
Server	\checkmark		\checkmark	
Target client	\checkmark	\checkmark		\checkmark
Remaining clients	\checkmark	✓		

Who Unlearns?

- Available knowledge varies depending on who unlearns.
- What if a target request removal and leave?

Ref.	J	J <mark>nlear</mark> n	er	Data Dist.	NIID sim.		
Kei.	Server	Target	Remain	Data Dist.	NIID SIIII.		
RevFRF[37]	•			n/d	n/d		
Exact-Fun[68]		•	•	Non-IID	random		
FATS[56]	•			Non-IID	Dirichlet		
Shao et al.[52]	•			Non-IID	unique		
Wang et al.[61]			•	IID	-		
FedRecover[4]	•		•	Non-IID	Fang		
Wu et al.[64]	•			n/d	n/d		
FedRecovery[77]	•			IID	-		
MetaFul[59]				IID, Non-IID	Dirichlet		
Deng et al.[9]	•			IID	-		
Crab[24]	•			n/d	_		
FedEraser[34]			•	n/d	n/d		
FRU[75]	•	•	•	n/d	n/d		
SIFU[15]	•		•	IID, Non-IID	Dirichlet		
SecForget[36]		•		n/d	n/d		
FFMU[6]				n/d	n/d		
FedFilter[60]	•			Non-IID	-		
UKRL[70]				IID, Non-IID	random		
MoDe[80]	•	•		Non-IID	Dirichlet		
FRAMU[50]			•	Non-IID	concept drift		
VeriFi[16]	•			Non-IID	Dirichlet		
Lin et al.[33]				n/d			
FC[46]	•			IID, Non-IID	_n/d		
Wang et al.[58]	•	•	•	IID, Non-IID	Fang		
SecureCut[76]	_			n/d	n/d		
FAST[20]	•			IID, Non-IID	random		
ElBedoui et al.[12]		•	_		- / 1		
FedME2[67]		•	•	n/d	n/d		
Alam et al.[1]		•			- / 1		
BFU[62]		•		n/d	n/d		
FedHarmony[11]		•	•	Non-IID	covariate shift		
2F2L[25]		•		IID	-		
Liu et al.[38]	_	•		IID Nava IID			
FedLU[81]	•	•	•	Non-IID	unique		
FedAF[31]				n/d	n/d		
HDUS[73]			•	Non-IID	unique		
EWC-SGA[65]	_			IID, Non-IID	unique Dirichlet		
SFU[29]	•		•	IID, Non-IID	Dirichlet		
Halimi et al.[21]				IID Non-IID	Dirichlet		
QuickDrop[10]			•	IID, Non-IID Non-IID			
forget-SVGD[17] Cforget-SVGD[18]				Non-IID	unique		
				Non-IID	unique Dirichlet		
KNOT[53] Lin et al.[32]	_	•		IID, Non-IID	random		
LIII et al.[32]			•	IID, NUII-IID	Tanuom		

Who Unlearns under What Data Distribution?

Unlearner	Global	Own local	All local	Raw data
Server	\checkmark		\checkmark	
Target client	\checkmark	\checkmark		\checkmark
Remaining clients	\checkmark	✓		

Who Unlearns?

- Available knowledge varies depending on who unlearns.
- What if a target request removal and leave?

Data Distribution?

- Only 54% considered Non-IID data settings.
- Non-IID simulation ≠ Real world data.

Ref.	Ţ	J nlearn	er	Data Dist.	NIID sim.		
KCI.	Server	Target	Remain	Data Dist.	MID SIII.		
RevFRF[37]	•			n/d	n/d		
Exact-Fun[68]		•	•	Non-IID	random		
FATS[56]				Non-IID	Dirichlet		
Shao et al.[52]				Non-IID	unique		
Wang et al.[61]			•	IID	-		
FedRecover[4]	•		•	Non-IID	Fang		
Wu et al.[64]	•			n/d	n/d		
FedRecovery[77]	•			IID	-		
MetaFul[59]				IID, Non-IID	Dirichlet		
Deng et al.[9]				IID	-		
Crab[24]	•			n/d	-		
FedEraser[34]			•	n/d	n/d		
FRU[75]	•	•	•	n/d	n/d		
SIFU[15]			•	IID, Non-IID	Dirichlet		
SecForget[36]		•		n/d	n/d		
FFMU[6]				n/d	n/d		
FedFilter[60]	•			Non-IID	-		
UKRL[70]				IID, Non-IID	random		
MoDe[80]				Non-IID	Dirichlet		
FRAMU[50]			•	Non-IID	concept drift		
VeriFi[16]	•			Non-IID	Dirichlet		
Lin et al.[33]	•			n/d	100		
FC[46]				IID, Non-IID	n/d		
Wang et al.[58]	•		•	IID, Non-IID	Fang		
SecureCut[76]				n/d	n/d		
FAST[20]				IID, Non-IID	random		
ElBedoui et al.[12]				IID	-		
FedME2[67]			•	n/d	n/d		
Alam et al.[1]				IID	-		
BFU[62]		•		n/d	n/d		
FedHarmony[11]			•	Non-IID	covariate shift		
2F2L[25]		•		IID	-		
Liu et al.[38]		•		IID			
FedLU[81]		•	•	Non-IID	unique		
FedAF[31]				n/d	n/d		
HDUS[73]			•	Non-IID	unique		
EWC-SGA[65]				IID, Non-IID	unique		
SFU[29]		•	•	IID, Non-IID	Dirichlet		
Halimi et al.[21]				IID	0.0000000000000000000000000000000000000		
QuickDrop[10]		•	•	IID, Non-IID	Dirichlet		
forget-SVGD[17]		•		Non-IID	unique		
Cforget-SVGD[18]		•		Non-IID	unique		
KNOT[53]	•		•	Non-IID	Dirichlet		
Lin et al.[32]			•	IID, Non-IID	random		

University of Massachusetts Amherst

On What Dataset?

Table 4: Counts of data types used for experiments.

Data Type	Count	Modality	Count
Image	90	Uni-modal	123
Tabular	23	Multi-modal	2
Text	6	"Other" includes 3 se	ensors, 1 graph,
Other	6	1 3D modeling, and	

^{*} The total count is 125.

On What Dataset?

Table 4: Counts of data types used for experiments.

Data Type	Count	Modality	Count
Image	90	Uni-modal	123
Tabular	23	Multi-modal	2
Text	6	"Other" includes 3 se	ensors, 1 graph,
Other	6	1 3D modeling, and	

^{*} The total count is 125.

Mostly on (simple) image datasets for classification tasks.

Learning Configurations

Model architecture?

- Mostly simple CNNs
- Less use of pretrained models

Dof	I)ata	Туре	2	Madal Auskitaatyus	Aggregation Mathad
Rei.	im	ta	tx	ot	Model Architecture	Aggregation Method
RevFRF[37] Exact-Fun[68] FATS[56] Shao et al.[52] Wang et al.[61] FedRecover[4] Wu et al.[64] FedRecovery[77] MetaFul[59] Deng et al.[9] Crab[24] FedEraser[34] FRU[75] SIFU[15] FFMU[6] FedFilter[60] UKRL[70] MoDe[80] FRAMU[50] VeriFi[16] Lin et al.[33] FC[46] Wang et al.[58] SecureCut[76] FAST[20] Elbedoui et al.[12] FedME2[67] Alam et al.[1] BFU[62] FedHarmony[11] 2F2L[25] Liu et al.[38] FedLU[81]				11.00	Random Forest 3-, 4-layer CNN CNN, pretrained VGG16, LSTM LeNet5 Linear model 3-layer CNN, FCNN 2-layer CNN, VGG11, AlexNet pre-trained CNN VGG16, LSTM CNN n/d MLP, 4-layer CNN NCF, LightGCN Regression model, CNN CNN, LeNet, ResNet18 4-layer CNN DNN ResNet n/d LeNet5, ResNet18, CNN, DenseNet121 3-, 4-layer CNN DC-KMeans ResNet, pre-trained VGG Gradient Boosted Decision Tree (GBDT) MLP, 2-layer CNN, VGG11, MobileNet 3-layer CNN MobileNetv3-large, ResNet50, RegNet-8g VGG11, ResNet18 3-layer BNN, ResNet18 VGG-based CNN 3-layer CNN 3-layer CNN 3-layer CNN, AlexNet, ResNet TransE, ComplEx, RotE	n/d FedAvg FedAvg Weighted Avg FedAvg, Med, TrMean FedAvg
Liu et al.[38] FedLU[81] FedAF[31] HDUS[73] EWC-SGA[65] SFU[29] Halimi et al.[21] QuickDrop[10]				•	3-layer CNN, AlexNet, ResNet TransE, ComplEx, RotE 3-layer CNN, ResNet10 ResNet8, 18, 50, MobileNet-S, -M, -L n/d MLP, 3-layer CNN, ResNet18 3-layer CNN 3-layer CNN	FedAvg FedAvg FedAvg n/d FedAvg n/d FedAvg FedAvg FedAvg FedAvg
forget-SVGD[17] Cforget-SVGD[18] KNOT[53] Lin et al.[32]	•	•	•		1-layer BNN MLP VGG16, LeNet5, MLP, GPT2 3-layer CNN, NanoGPT	n/d FedAvg FedAvg, FedBuff FedAvg

Learning Configurations

Model architecture?

- Mostly simple CNNs
- Less use of pretrained models

Ref.	Ι)ata [Гуре		Model Architecture	Aggregation Method
	im	ta	tx	ot	Wiodel / Heintecture	riggregation wethou
RevFRF[37]	•	•			Random Forest	n/d
Exact-Fun[68]	•				3-, 4-layer CNN	FedAvg
FATS[56]	•		•		CNN, pretrained VGG16, LSTM	FedAvg
Shao et al.[52]	•				LeNet5	Weighted Avg
Wang et al.[61]				•	Linear model	FedAvg
FedRecover[4]	•	•			3-layer CNN, FCNN	FedAvg, Med, TrMean
Wu et al.[64]	•/				2-layer CNN, VGG11, AlexNet	FedAvg
FedRecovery[77]	/				pre-trained CNN	FedAvg
MetaFul[59]	•			•	VGG16, LSTM	FedAvg
Deng et al.[9]	•				CNN	n/d
Crab[24]	•		•		n/d	FedAvg
FedEraser[34]	•				MLP, 4-layer CNN	FedAvg
FRU[75]					NCF, LightGCN	FedAvg
SIFU[15]					Regression model, CNN	FedAvg
FFMU[6]	•				CNN, LeNet, ResNet18	FedAvg
FedFilter[60]					4-layer CNN	Avg. base layers
UKRL[70]	•				DNN	FedAvg
MoDe[80]	•				ResNet	FedAvg
FRAMU[50]	•		•	•	n/d	FedAvg
VeriFi[16]	•				LeNet5, ResNet18, CNN, DenseNet121	FedAvg, Krum, Median
Lin et al.[33]					3-, 4-layer CNN	Weighted Avg
FC[46]	•	•			DC-KMeans	SCMA
Wang et al.[58]					ResNet, pre-trained VGG	FedAvg
SecureCut[76]					Gradient Boosted Decision Tree (GBDT)	n/d
FAST[20]					MLP, 2-layer CNN, VGG11, MobileNet	FedAvg
Elbedoui et al.[12]				•	3-layer CNN	FedAvg
FedME2[67]	•				MobileNetv3-large, ResNet50, RegNet-8g	
Alam et al.[1]					VGG11, ResNet18	FedAvg
BFU[62]					3-layer BNN, ResNet18	FedAvg
FedHarmony[11]	•				VGG-based CNN	FedEqual
2F2L[25]					3-layer CNN	FedAvg
Liu et al.[38]					3-layer CNN, AlexNet, ResNet	FedAvg
FedLU[81]				•	TransE, ComplEx, RotE	FedAvg
FedAF[31]	•				3-layer CNN, ResNet10	FedAvg
HDUS[73]					ResNet8, 18, 50, MobileNet-S, -M, -L	n/d
EWC-SGA[65]					n/d	FedAvg
SFU[29]					MLP, 3-layer CNN, ResNet18	n/d
Halimi et al.[21]					3-layer CNN	FedAvg
QuickDrop[10]	•				3-layer CNN	FedAvg
forget-SVGD[17]	•				1-layer BNN	n/d
Cforget-SVGD[18]	•				MLP	FedAvg
KNOT[53]	•				VGG16, LeNet5, MLP, GPT2	FedAvg, FedBuff
Lin et al.[32]			•		3-layer CNN, NanoGPT	FedAvg

Learning Configurations

Model architecture?

- Mostly simple CNNs
- Less use of pretrained models

Aggregation methods?

- Simple FedAvg (> 90% of works)
- Median, Trimmed Mean

Ref.	Ι)ata ˈ	Туре		Model Architecture	Aggregation Method
Kei.	im	ta	tx	ot	Wodel Atchitecture	Aggregation Method
RevFRF[37]	•	•			Random Forest	n/d
Exact-Fun[68]	•				3-, 4-layer CNN	FedAvg
FATS[56]	•				CNN, pretrained VGG16, LSTM	FedAvg
Shao et al.[52]					LeNet5	Weighted Avg
Wang et al.[61]					Linear model	FedAvg
FedRecover[4]					3-layer CNN, FCNN	FedAvg, Med, TrMean
Wu et al.[64]					2-layer CNN, VGG11, AlexNet	FedAvg
FedRecovery[77]	•				pre-trained CNN	FedAvg
MetaFul[59]				•	VGG16, LSTM	FedAvg
Deng et al.[9]	•				CNN	n/d
Crab[24]					n/d	FedAvg
FedEraser[34]	•				MLP, 4-layer CNN	FedAvg
FRU[75]					NCF, LightGCN	FedAvg
SIFU[15]	•				Regression model, CNN	FedAvg
FFMU[6]					CNN, LeNet, ResNet18	FedAvg
FedFilter[60]	_				4-layer CNN	Avg. base layers
UKRL[70]	•				DNN	FedAvg
MoDe[80]	•	_		_	ResNet	FedAvg
FRAMU[50]	•		•	•	n/d	FedAvg
VeriFi[16]					LeNet5, ResNet18, CNN, DenseNet121	FedAvg, Krum, Median
Lin et al.[33]					3-, 4-layer CNN DC-KMeans	Weighted Avg SCMA
FC[46] Wang et al.[58]					ResNet, pre-trained VGG	FedAvg
SecureCut[76]					Gradient Boosted Decision Tree (GBDT)	n/d
FAST[20]					MLP, 2-layer CNN, VGG11, MobileNet	FedAvg
Elbedoui et al.[12]					3-layer CNN	FedAvg
FedME2[67]	•				MobileNetv3-large, ResNet50, RegNet-8gf	FedAvg
Alam et al.[1]	•				VGG11, ResNet18	FedAvg
BFU[62]	•				3-layer BNN, ResNet18	FedAvg
FedHarmony[11]	•				VGG-based CNN	FedEqual
2F2Ĺ[25]	•				3-layer CNN	FedAvg
Liu et al.[38]	•				3-layer CNN, AlexNet, ResNet	FedAvg
FedLU[81]				•	TransE, ComplEx, RotE	FedAvg
FedAF[31]					3-layer CNN, ResNet10	FedAvg
HDUS[73]					ResNet8, 18, 50, MobileNet-S, -M, -L	n/d
EWC-SGA[65]					n/d	FedAvg
SFU[29]					MLP, 3-layer CNN, ResNet18	n/d
Halimi et al.[21]	•				3-layer CNN	FedAvg
QuickDrop[10]	•				3-layer CNN	FedAvg
forget-SVGD[17]	•				1-layer BNN	n/d
Cforget-SVGD[18]	•	102117			MLP	FedAvg
KNOT[53]	•		•		VGG16, LeNet5, MLP, GPT2	FedAvg, FedBuff
Lin et al.[32]	•		•		3-layer CNN, NanoGPT	FedAvg

Research Implications

- Mostly focused on efficacy, fidelity, efficiency
- Less considerations on security, guarantee, adaptivity, scalability

Ref.	Aggregation Method			Im	plica	tion		
	1156106 attom Wethou	efc	fid	efn	sec	gua	ada	sca
RevFRF[37]	n/d	•	•	•	•			
Exact-Fun[68]	FedAvg	•	•					
FATS[56]	FedAvg	•	•			•		
Shao et al.[52]	Weighted Avg	•		•		•		
Wang et al.[61]	FedAvg	•						
FedRecover[4]	FedAvg, Med, TrMean	•			•			
Wu et al.[64]	FedAvg	•						
FedRecovery[77]	FedAvg	•	•	•	•	•		
MetaFul[59]	FedAvg	•	•	•				
Deng et al.[9]	n/d	•	•	•				
Crab[24]	FedAvg	•		•				
FedEraser[34]	FedAvg	•	•	•				
FRU[75]	FedAvg	•	•	•	102.0	10.210	•	
SIFU[15]	FedAvg	•	•	•		•		
FFMU[6]	FedAvg	•	•	•		•		
FedFilter[60]	Avg. base layers	•						
UKRL[70]	FedAvg	•		•				
MoDe[80]	FedAvg	•	•	•			_	
FRAMU[50]	FedAvg	•	•	•	_		•	
VeriFi[16]	FedAvg, Krum, Median	•	•	•	•		22	
Lin et al.[33]	Weighted Avg	•	•	•	•	_	•	
FC[46]	SCMA	•	•	•	•	•		
Wang et al.[58]	FedAvg	•	•	•				
SecureCut[76]	n/d Fod Ave	•						
FAST[20] Elbedoui et al.[12]	FedAvg FedAvg			•	•			
FedME2[67]	FedAvg							
Alam et al.[1]	FedAvg							
BFU[62]	FedAvg							
FedHarmony[11]	FedEqual							
2F2L[25]	FedAvg							
Liu et al.[38]	FedAvg							
FedLU[81]	FedAvg							
FedAF[31]	FedAvg							
HDUS[73]	n/d							
EWC-SGA[65]	FedAvg							
SFU[29]	n/d							
Halimi et al.[21]	FedAvg							
QuickDrop[10]	FedAvg							
forget-SVGD[17]	n/d			•				•
Cforget-SVGD[18]	FedAvg		•	•				
KNOT[53]	FedAvg, FedBuff	•	•	•			•	•
Lin et al.[32]	FedAvg	•	•	•		•	•	•

Evaluation Objectives and Metrics

Table 7: A summary of Evaluation Metrics

Category	Metric
Performance	Accuracy on the target set Loss and errors on the target set MSE and MAE
Parameter difference	L2 distance KLD Error rate (SAPE, ECE) Angular deviation 1st Wasserstein distance
Indiscrimination quality	ASR, precision, and recall on BA ASR, precision, and recall on MIA Multi-task learning Influence function
Performance	Accuracy on test set Accuracy on remaining dataset Loss and errors on remaining set
Complexity	Time taken for unlearning Speed-up ratio Memory in MB
	Parameter difference Indiscrimination quality Performance

Compare retraining and unlearning

No benchmark metric to assess different approaches

Evaluation Objectives and Metrics

Table 7: A summary of Evaluation Metrics

Objective	Category	Metric
Efficacy	Performance	Accuracy on the target set Loss and errors on the target set MSE and MAE
	Parameter difference	L2 distance KLD Error rate (SAPE, ECE) Angular deviation 1st Wasserstein distance
	Indiscrimination quality	ASR, precision, and recall on BA ASR, precision, and recall on MIA Multi-task learning Influence function
Fidelity	Performance	Accuracy on test set Accuracy on remaining dataset Loss and errors on remaining set
Efficiency	Complexity	Time taken for unlearning Speed-up ratio Memory in MB

Compare retraining and unlearning

No benchmark metric to assess different approaches

Simple BAs obscured impact of unlearning

Insights and Future Research Direction

- Data are heterogeneous.
- Privacy-preserving unlearning is needed in many domain.
- Advanced aggregation methods could alleviate issues.
- FU introduces additional privacy vulnerabilities.
- Benchmark evaluation metrics enable method comparisons against a common standard.
- Simple BA impacts reduces by training round.

Questions & Answers

Full paper: https://arxiv.org/abs/2403.02437

University of Massachusetts Amherst