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• Local data stays on device, only model 
weights are shared

• Use cases: mobile phones, hospitals, IoT

• Benefits: privacy, decentralization

• But introduces new attack surfaces

What is Federated Learning?
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• Untargeted poisoning: degrade model 
performance (Fang-Krum, Fang-Med)

• Targeted attacks / Backdoors: 
misclassify specific inputs

• Challenge: These attacks are harder to 
detect under non-IID data

Threats in Federated Learning
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Vulnerable to 
   poisoning attacks



Motivation and Challenge

• Similar Most defenses assume IID data or require manual thresholds

• Non-IID client data → benign clients look diverse → hard to detect attackers

• Need a defense that:

• Is threshold-free

• Works under non-IID

• Doesn't require access to data
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Overview of FedCC
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• Core idea: Use CKA 
similarity on PLRs

• Use clustering to softly 
weight (not reject) client 
updates

• Works under any client 
distribution



Why Penultimate Layer Representations 
(PLR)?

• Later layers are more sensitive to local data.

• PLRs differentiate the poisonous models [1].

• Backdoor patterns cluster in a penultimate layer latent space [2].
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Why Centered Kernel Alignment (CKA)?

• Compares representations across models robustly

• Better than cosine, Euclidean, or MMD

• Handles scaling, rotations, and different weight magnitudes

• Works well even with non-IID data
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FedCC Aggregation Procedure
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1. Send a global model
2. Send local models
3. Extract PLR for each 

client
4. Compute CKA similarity 

to global model
5. Run clustering
6. Apply within-cluster 

normalization on PLRs, 
across-cluster for others

7.  Layer-wise weighted 
aggregation



Experimental Setup

• Datasets: fMNIST, CIFAR-10, CIFAR-100

• Architectures: Lightweight CNNs

• Non-IID simulation: a Dirichlet distribution with α = 0.2

• Attacks: Fang-Krum, Fang-Med, Targeted Backdoor, DBA

• Baselines: FedAvg, Krum, Coomed, Multi-Krum, Bulyan, FLARE, FLTrust

• Metrics: Accuracy, Backdoor Confidence
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Results: Untargeted Attacks (Non-IID)

• FedCC achieves highest accuracy across all datasets

• Other methods misidentify benign clients → lower performance
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Results: targeted Attacks (Non-IID)

• FedCC reduces backdoor confidence to near zero

• Also maintains high main task accuracy

• DBA (distributed backdoor) handled effectively
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Results: IID Setting

• FedCC also outperforms others under IID

• Indicates generalizability
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Results: Robustness and Scalability 

• Varying numbers of attackers

• Different participation rates
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Comparison Summary
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Criteria FedCC Krum Coomed FLARE

Non-IID Robustness

No data access

Backdoor defense

Threshold-free



Limitations & Future Work

• Only tested on CNNs and small datasets

• Assumes homogeneous models

• CKA computation is not lightweight

• No formal guarantees (only empirical + theoretical insight)
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Conclusion

• FedCC introduces a new aggregation method using CKA over PLRs

• Robust to both untargeted and backdoor attacks

• Especially effective under non-IID, which is common in practice
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Thank You
Questions to hjeong@umass.edu

https://github.com/HyejunJeong/FedCC 

mailto:hjeong@umass.edu
https://github.com/HyejunJeong/FedCC
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