FedCC: Robust Federated Learning against Poisoning Attacks

Hyejun Jeong (UMass Amherst), Hamin Son (UC Davis), Seohu Lee (Johns Hopkins Univ.), Jayun Hyun (Hippo T&C Inc.), Tai-Myoung Chung (Hippo T&C Inc.)

SecureComm 2025

What is Federated Learning?

- Local data stays on device, only model weights are shared
- Use cases: mobile phones, hospitals, IoT
- Benefits: privacy, decentralization
- But introduces new attack surfaces

Threats in Federated Learning

- Untargeted poisoning: degrade model performance (Fang-Krum, Fang-Med)
- Targeted attacks / Backdoors: misclassify specific inputs
- Challenge: These attacks are harder to detect under non-IID data

Vulnerable to poisoning attacks

Motivation and Challenge

- Similar Most defenses assume IID data or require manual thresholds
- Non-IID client data → benign clients look diverse → hard to detect attackers
- Need a defense that:
 - Is threshold-free
 - Works under non-IID
 - Doesn't require access to data

Overview of FedCC

- Core idea: Use CKA similarity on PLRs
- Use clustering to softly weight (not reject) client updates
- Works under any client distribution

Why Penultimate Layer Representations (PLR)?

- Later layers are more sensitive to local data.
- PLRs differentiate the poisonous models [1].
- Backdoor patterns cluster in a penultimate layer latent space [2].

Why Centered Kernel Alignment (CKA)?

- Compares representations across models robustly
- Better than cosine, Euclidean, or MMD
- Handles scaling, rotations, and different weight magnitudes
- Works well even with non-IID data

Table 1: Comparison of Performance with Various Similarity Metrics

Method	Fang-Med		Fang-mKrum		Targeted		
	IID	NIID	IID	NIID	IID	NIID	
Kernel CKA	69.20	41.00	70.22	43.24	71.44/6e-07	54.62/0.0118	
Linear CKA	10.00	13.13	64.09	39.55	71.02/0.0007	49.53/0.0616	
MMD	63.39	40.90	69.69	32.27	70.85/1e-09	50.51/9e-05	
Cosine	68.82	33.90	68.81	10.04	69.76/0.0002	53.66/0.0529	
Euclidean	69.06	27.82	68.54	41.57	69.17/0.0221	52.20/0.0015	

FedCC Aggregation Procedure

- 1. Send a global model
- 2. Send local models
- Extract PLR for each client
- 4. Compute **CKA similarity** to global model
- 5. Run clustering
- 6. Apply within-cluster normalization on PLRs, across-cluster for others
- 7. Layer-wise weighted aggregation

Experimental Setup

- Datasets: fMNIST, CIFAR-10, CIFAR-100
- Architectures: Lightweight CNNs
- Non-IID simulation: a Dirichlet distribution with $\alpha = 0.2$
- Attacks: Fang-Krum, Fang-Med, Targeted Backdoor, DBA
- Baselines: FedAvg, Krum, Coomed, Multi-Krum, Bulyan, FLARE, FLTrust
- Metrics: Accuracy, Backdoor Confidence

Results: Untargeted Attacks (Non-IID)

- FedCC achieves highest accuracy across all datasets
- Other methods misidentify benign clients → lower performance

Table 3: Test Accuracy under untargeted attacks in Non-IID setting.

Case	data	\mathbf{FedAvg}	Krum	MKrum	Coomed	Bulyan	FLTrust	FLARE	FedCC
Fang	fM	57.14	16.51	45.88	57.12	13.39	60.8	49.54	71.13
-Krum	C10	33.69	15.38	20.5	35.7	19.23	41.87	17.03	52.06
non-IID	C100	2.27	1	4.95	7.85	0.98	11.04	7.46	14.51
Fang	fM	16.32	49.33	66.84	68.9	64.12	18.96	52.25	72.76
-Med	C10	10.02	25.06	45.44	40.23	32.47	10	14.59	47.85
non-IID	C100	1	6.24	14.52	10.27	6.91	1.09	1	16.12

Results: targeted Attacks (Non-IID)

- FedCC reduces backdoor confidence to near zero
- Also maintains high main task accuracy
- DBA (distributed backdoor) handled effectively

					Coomed				
Target	fM	75.65	45.27	65.97	71.70	57.96	61.82	64.31	75.66
Target non-IID	C10	36.16	14.98	30.72	48.97	40.11	44.06	10.18	51.56
	C100	4.46	6.18	6.90	12.04	11.16	12.95	1.14	15.26
$\overline{\mathrm{DBA}}$	C10	38.56	24.94	7.09	44.45	34.19	51.49	38.73	52.28

Results: IID Setting

- FedCC also outperforms others under IID
- Indicates generalizability

\mathbf{Case}	data	$\overline{\mathbf{FedAvg}}$	Krum	MKrum	Coomed	Bulyan	FLTrust	FLARE	\mathbf{FedCC}
Fang	fM	75.55	31.66	87.78	87.62	50.30	89.53	79.16	89.57
-Krum	C10	49.67	40.86	63.42	57.40	12.67	68.25	25.77	69.84
IID	C100	13.72	1.04	7.64	6.17	1.59	17.14	7.49	18.47
Fang	fM	20.86	85.33	89.53	86.70	87.45	21.36	71.08	89.66
$\mathbf{-Med}$	C10	9.51	54.28	69.68	59.20	57.69	9.92	49.82	70.52
IID	C100	0.87	12.27	16.52	14.43	12.56	1.16	5.83	17.83

					Coomed				
Target IID	fM	88.27	86.63	87.03	89.41	89.45	89.59	75.29	90.01
	C10	64.68	57.69	71.19	69.85	68.76	68.61	11.09	71.64
DBA	C10	10.00	35.58	51.40	10.00	16.16	56.69	10.00	58.04

Results: Robustness and Scalability

- Varying numbers of attackers
- Different participation rates

		\mathbf{U}	ntarge	ted-Krun	n	${\bf Untargeted\text{-}Med}$			
Frac	Data	FedAvg	Med	FLARE	FedCC	$\overline{\text{FedAvg}}$	Med	FLARE	FedCC
0.1	fM C10	55.31 10.06	49.83 22.55	$34.02 \\ 14.50$	64.83 20.49	16.57 10.00	66.41 15.33	52.24 10.00	69.52 29.81
0.3	fM C10	$64.22 \\ 24.24$	57.52 12.59	10.00 10.00	$73.55 \\ 27.81$	16.26 10.98	58.07 22.61	10.00 10.00	$61.12 \\ 38.27$
0.5	fM C10	62.37 23.99	58.20 17.28	10.00 10.06	$76.41 \\ 34.32$	18.36 9.87	62.49 27.83	10.00 10.00	$69.05 \\ 37.27$

Comparison Summary

Criteria	FedCC	Krum	Coomed	FLARE
Non-IID Robustness	✓	×	<u> </u>	×
No data access	<u>~</u>	✓	~	×
Backdoor defense	✓	<u> </u>	✓	<u>^</u>
Threshold-free	<u>~</u>	×	×	×

Limitations & Future Work

- Only tested on CNNs and small datasets
- Assumes homogeneous models
- CKA computation is not lightweight
- No formal guarantees (only empirical + theoretical insight)

Conclusion

- FedCC introduces a new aggregation method using CKA over PLRs
- Robust to both untargeted and backdoor attacks
- Especially effective under **non-IID**, which is common in practice

Thank You

Questions to hjeong@umass.edu

https://github.com/HyejunJeong/FedCC

